ExecStreamUnitTestBase.cpp

Go to the documentation of this file.
00001 /*
00002 // $Id: //open/dev/fennel/test/ExecStreamUnitTestBase.cpp#23 $
00003 // Fennel is a library of data storage and processing components.
00004 // Copyright (C) 2005-2009 The Eigenbase Project
00005 // Copyright (C) 2005-2009 SQLstream, Inc.
00006 // Copyright (C) 2005-2009 LucidEra, Inc.
00007 // Portions Copyright (C) 2004-2009 John V. Sichi
00008 //
00009 // This program is free software; you can redistribute it and/or modify it
00010 // under the terms of the GNU General Public License as published by the Free
00011 // Software Foundation; either version 2 of the License, or (at your option)
00012 // any later version approved by The Eigenbase Project.
00013 //
00014 // This program is distributed in the hope that it will be useful,
00015 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00016 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00017 // GNU General Public License for more details.
00018 //
00019 // You should have received a copy of the GNU General Public License
00020 // along with this program; if not, write to the Free Software
00021 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
00022 */
00023 
00024 #include "fennel/common/CommonPreamble.h"
00025 #include "fennel/test/ExecStreamUnitTestBase.h"
00026 #include "fennel/exec/ExecStreamGraph.h"
00027 #include "fennel/exec/ExecStreamGraphEmbryo.h"
00028 #include "fennel/exec/ExecStreamScheduler.h"
00029 #include "fennel/exec/ExecStream.h"
00030 #include "fennel/exec/ScratchBufferExecStream.h"
00031 #include "fennel/exec/ExecStreamEmbryo.h"
00032 #include "fennel/exec/ExecStreamBufAccessor.h"
00033 #include "fennel/exec/MockProducerExecStream.h"
00034 #include "fennel/tuple/TuplePrinter.h"
00035 #include "fennel/cache/QuotaCacheAccessor.h"
00036 
00037 #include <boost/test/test_tools.hpp>
00038 
00039 FENNEL_BEGIN_CPPFILE("$Id: //open/dev/fennel/test/ExecStreamUnitTestBase.cpp#23 $");
00040 
00041 SharedExecStream ExecStreamUnitTestBase::prepareSourceGraph(
00042     ExecStreamEmbryo &sourceStreamEmbryo)
00043 {
00044     std::vector<ExecStreamEmbryo> transforms;
00045     return prepareTransformGraph(sourceStreamEmbryo, transforms);
00046 }
00047 
00048 SharedExecStream ExecStreamUnitTestBase::prepareTransformGraph(
00049     ExecStreamEmbryo &sourceStreamEmbryo,
00050     ExecStreamEmbryo &transformStreamEmbryo)
00051 {
00052     std::vector<ExecStreamEmbryo> transforms;
00053     transforms.push_back(transformStreamEmbryo);
00054     return prepareTransformGraph(sourceStreamEmbryo, transforms);
00055 }
00056 
00057 SharedExecStream ExecStreamUnitTestBase::prepareTransformGraph(
00058     ExecStreamEmbryo &sourceStreamEmbryo,
00059     std::vector<ExecStreamEmbryo> &transforms)
00060 {
00061     pGraphEmbryo->saveStreamEmbryo(sourceStreamEmbryo);
00062     std::vector<ExecStreamEmbryo>::iterator it;
00063 
00064     // save all transforms
00065     for (it = transforms.begin(); it != transforms.end(); ++it) {
00066         pGraphEmbryo->saveStreamEmbryo(*it);
00067     }
00068 
00069     // connect streams in a cascade
00070     ExecStreamEmbryo& previousStream = sourceStreamEmbryo;
00071     for (it = transforms.begin(); it != transforms.end(); ++it) {
00072         pGraphEmbryo->addDataflow(
00073             previousStream.getStream()->getName(),
00074             (*it).getStream()->getName());
00075         previousStream = *it;
00076     }
00077 
00078     SharedExecStream pAdaptedStream =
00079         pGraphEmbryo->addAdapterFor(
00080             previousStream.getStream()->getName(),
00081             0,
00082             BUFPROV_PRODUCER);
00083     pGraph->addOutputDataflow(pAdaptedStream->getStreamId());
00084 
00085     pGraphEmbryo->prepareGraph(shared_from_this(), "");
00086     return pAdaptedStream;
00087 }
00088 
00089 SharedExecStream ExecStreamUnitTestBase::prepareConfluenceGraph(
00090     ExecStreamEmbryo &sourceStreamEmbryo1,
00091     ExecStreamEmbryo &sourceStreamEmbryo2,
00092     ExecStreamEmbryo &confluenceStreamEmbryo)
00093 {
00094     std::vector<ExecStreamEmbryo> sourceStreamEmbryos;
00095     sourceStreamEmbryos.push_back(sourceStreamEmbryo1);
00096     sourceStreamEmbryos.push_back(sourceStreamEmbryo2);
00097     return prepareConfluenceGraph(sourceStreamEmbryos, confluenceStreamEmbryo);
00098 }
00099 
00100 SharedExecStream ExecStreamUnitTestBase::prepareConfluenceTransformGraph(
00101     ExecStreamEmbryo &sourceStreamEmbryo1,
00102     ExecStreamEmbryo &sourceStreamEmbryo2,
00103     ExecStreamEmbryo &confluenceStreamEmbryo,
00104     ExecStreamEmbryo &transformStreamEmbryo)
00105 {
00106     std::vector<ExecStreamEmbryo> sourceStreamEmbryos;
00107     sourceStreamEmbryos.push_back(sourceStreamEmbryo1);
00108     sourceStreamEmbryos.push_back(sourceStreamEmbryo2);
00109 
00110     std::vector<ExecStreamEmbryo>::iterator it;
00111 
00112     for (it = sourceStreamEmbryos.begin(); it != sourceStreamEmbryos.end();
00113         ++it)
00114     {
00115         pGraphEmbryo->saveStreamEmbryo(*it);
00116     }
00117     pGraphEmbryo->saveStreamEmbryo(confluenceStreamEmbryo);
00118 
00119     for (it = sourceStreamEmbryos.begin(); it != sourceStreamEmbryos.end();
00120         ++it)
00121     {
00122         pGraphEmbryo->addDataflow(
00123             (*it).getStream()->getName(),
00124             confluenceStreamEmbryo.getStream()->getName());
00125     }
00126 
00127     std::vector<ExecStreamEmbryo> transforms;
00128     transforms.push_back(transformStreamEmbryo);
00129     ExecStreamEmbryo& previousStream = confluenceStreamEmbryo;
00130 
00131     // save all transforms
00132     for (it = transforms.begin(); it != transforms.end(); ++it) {
00133         pGraphEmbryo->saveStreamEmbryo(*it);
00134     }
00135 
00136     for (it = transforms.begin(); it != transforms.end(); ++it) {
00137         pGraphEmbryo->addDataflow(
00138             previousStream.getStream()->getName(),
00139             (*it).getStream()->getName());
00140         previousStream = *it;
00141     }
00142 
00143 
00144     SharedExecStream pAdaptedStream =
00145         pGraphEmbryo->addAdapterFor(
00146             previousStream.getStream()->getName(),
00147             0,
00148             BUFPROV_PRODUCER);
00149     pGraph->addOutputDataflow(pAdaptedStream->getStreamId());
00150 
00151     pGraphEmbryo->prepareGraph(shared_from_this(), "");
00152     return pAdaptedStream;
00153 }
00154 
00155 SharedExecStream ExecStreamUnitTestBase::prepareConfluenceGraph(
00156     std::vector<ExecStreamEmbryo> &sourceStreamEmbryos,
00157     ExecStreamEmbryo &confluenceStreamEmbryo)
00158 {
00159     std::vector<std::vector<ExecStreamEmbryo> > sourceStreamEmbryosList;
00160     std::vector<ExecStreamEmbryo>::iterator it;
00161     std::vector<ExecStreamEmbryo> sourceStreamList;
00162     for (it = sourceStreamEmbryos.begin(); it != sourceStreamEmbryos.end();
00163         it++)
00164     {
00165         sourceStreamList.clear();
00166         sourceStreamList.push_back(*it);
00167         sourceStreamEmbryosList.push_back(sourceStreamList);
00168     }
00169 
00170     return
00171         prepareConfluenceGraph(sourceStreamEmbryosList, confluenceStreamEmbryo);
00172 }
00173 
00174 SharedExecStream ExecStreamUnitTestBase::prepareConfluenceGraph(
00175     std::vector<std::vector<ExecStreamEmbryo> > &sourceStreamEmbryosList,
00176     ExecStreamEmbryo &confluenceStreamEmbryo)
00177 {
00178     pGraphEmbryo->saveStreamEmbryo(confluenceStreamEmbryo);
00179 
00180     for (int i = 0; i < sourceStreamEmbryosList.size(); i++) {
00181         for (int j = 0; j < sourceStreamEmbryosList[i].size(); j++) {
00182             pGraphEmbryo->saveStreamEmbryo(sourceStreamEmbryosList[i][j]);
00183         }
00184 
00185         // connect streams in each sourceStreamEmbryos list in a cascade
00186         for (int j = 1; j < sourceStreamEmbryosList[i].size(); j++) {
00187             pGraphEmbryo->addDataflow(
00188                 sourceStreamEmbryosList[i][j - 1].getStream()->getName(),
00189                 sourceStreamEmbryosList[i][j].getStream()->getName());
00190         }
00191         pGraphEmbryo->addDataflow(
00192             sourceStreamEmbryosList[i].back().getStream()->getName(),
00193             confluenceStreamEmbryo.getStream()->getName());
00194     }
00195 
00196     SharedExecStream pAdaptedStream =
00197         pGraphEmbryo->addAdapterFor(
00198             confluenceStreamEmbryo.getStream()->getName(), 0,
00199             BUFPROV_PRODUCER);
00200     pGraph->addOutputDataflow(
00201         pAdaptedStream->getStreamId());
00202 
00203     pGraphEmbryo->prepareGraph(shared_from_this(), "");
00204 
00205     return pAdaptedStream;
00206 }
00207 
00208 SharedExecStream ExecStreamUnitTestBase::prepareDAG(
00209     ExecStreamEmbryo &srcStreamEmbryo,
00210     ExecStreamEmbryo &splitterStreamEmbryo,
00211     std::vector<ExecStreamEmbryo> &interStreamEmbryos,
00212     ExecStreamEmbryo &destStreamEmbryo,
00213     bool createSink,
00214     bool saveSrc)
00215 {
00216     std::vector<std::vector<ExecStreamEmbryo> > listOfList;
00217 
00218     // Convert interStreamEmbryos to a vector of vectors.  E.g., if
00219     // interStreamEmbryos contains (1, 2, 3), it will get converted to:
00220     // ((1)) ((2)) ((3))
00221     for (uint i = 0; i < interStreamEmbryos.size(); i++) {
00222         std::vector<ExecStreamEmbryo> interStreamEmbryoList;
00223 
00224         interStreamEmbryoList.push_back(interStreamEmbryos[i]);
00225         listOfList.push_back(interStreamEmbryoList);
00226     }
00227     return prepareDAG(
00228         srcStreamEmbryo, splitterStreamEmbryo, listOfList, destStreamEmbryo,
00229         createSink, saveSrc);
00230 }
00231 
00232 SharedExecStream ExecStreamUnitTestBase::prepareDAG(
00233     ExecStreamEmbryo &srcStreamEmbryo,
00234     ExecStreamEmbryo &splitterStreamEmbryo,
00235     std::vector<std::vector<ExecStreamEmbryo> > &interStreamEmbryos,
00236     ExecStreamEmbryo &destStreamEmbryo,
00237     bool createSink,
00238     bool saveSrc)
00239 {
00240     if (saveSrc) {
00241         pGraphEmbryo->saveStreamEmbryo(srcStreamEmbryo);
00242     }
00243     pGraphEmbryo->saveStreamEmbryo(splitterStreamEmbryo);
00244 
00245     // save all intermediate stream embryos
00246     for (int i = 0; i < interStreamEmbryos.size(); i++) {
00247         for (int j = 0; j < interStreamEmbryos[i].size(); j++) {
00248             pGraphEmbryo->saveStreamEmbryo(interStreamEmbryos[i][j]);
00249         }
00250 
00251         // connect streams in each interStreamEmbryos list in a cascade
00252         for (int j = 1; j < interStreamEmbryos[i].size(); j++) {
00253             pGraphEmbryo->addDataflow(
00254                 interStreamEmbryos[i][j - 1].getStream()->getName(),
00255                 interStreamEmbryos[i][j].getStream()->getName());
00256         }
00257     }
00258 
00259     pGraphEmbryo->saveStreamEmbryo(destStreamEmbryo);
00260 
00261     pGraphEmbryo->addDataflow(
00262         srcStreamEmbryo.getStream()->getName(),
00263         splitterStreamEmbryo.getStream()->getName());
00264 
00265     // connect all inter streams to src and dest
00266     for (int i = 0; i < interStreamEmbryos.size(); i++) {
00267         pGraphEmbryo->addDataflow(
00268             splitterStreamEmbryo.getStream()->getName(),
00269             interStreamEmbryos[i][0].getStream()->getName());
00270         pGraphEmbryo->addDataflow(
00271             interStreamEmbryos[i].back().getStream()->getName(),
00272             destStreamEmbryo.getStream()->getName());
00273     }
00274 
00275     SharedExecStream pAdaptedStream;
00276 
00277     if (createSink) {
00278         pAdaptedStream = pGraphEmbryo->addAdapterFor(
00279             destStreamEmbryo.getStream()->getName(), 0,
00280             BUFPROV_PRODUCER);
00281         pGraph->addOutputDataflow(pAdaptedStream->getStreamId());
00282 
00283         pGraphEmbryo->prepareGraph(shared_from_this(), "");
00284     }
00285 
00286     return pAdaptedStream;
00287 }
00288 
00289 void ExecStreamUnitTestBase::testCaseSetUp()
00290 {
00291     ExecStreamTestBase::testCaseSetUp();
00292     openRandomSegment();
00293     pGraph = newStreamGraph();
00294     pGraphEmbryo = newStreamGraphEmbryo(pGraph);
00295     pGraph->setResourceGovernor(pResourceGovernor);
00296 
00297     // we don't bother with quotas for unit tests, but we do need
00298     // to be able to associate TxnId's in order for parallel
00299     // execution to work (since a cache page may be pinned
00300     // by one thread and then released by another)
00301     pCacheAccessor.reset(
00302         new TransactionalCacheAccessor(pCache));
00303 }
00304 
00305 void ExecStreamUnitTestBase::resetExecStreamTest()
00306 {
00307     if (pScheduler) {
00308         pScheduler->stop();
00309     }
00310     tearDownExecStreamTest();
00311 
00312     pScheduler.reset(newScheduler());
00313     pGraph = newStreamGraph();
00314     pGraphEmbryo = newStreamGraphEmbryo(pGraph);
00315     pGraph->setResourceGovernor(pResourceGovernor);
00316 }
00317 
00318 // refines ExecStreamTestBase::testCaseTearDown()
00319 void ExecStreamUnitTestBase::tearDownExecStreamTest()
00320 {
00321     pGraph.reset();
00322     pGraphEmbryo.reset();
00323 }
00324 
00325 void ExecStreamUnitTestBase::verifyOutput(
00326     ExecStream &stream,
00327     uint nRowsExpected,
00328     MockProducerExecStreamGenerator &generator,
00329     bool stopEarly)
00330 {
00331     // TODO:  assertions about output tuple
00332 
00333     pResourceGovernor->requestResources(*pGraph);
00334     pGraph->open();
00335     pScheduler->start();
00336     uint nRows = 0;
00337     for (;;) {
00338         ExecStreamBufAccessor &bufAccessor =
00339             pScheduler->readStream(stream);
00340         if (bufAccessor.getState() == EXECBUF_EOS) {
00341             break;
00342         }
00343         BOOST_REQUIRE(bufAccessor.isConsumptionPossible());
00344         const uint nCol =
00345             bufAccessor.getConsumptionTupleAccessor().size();
00346         BOOST_REQUIRE(nCol == bufAccessor.getTupleDesc().size());
00347         BOOST_REQUIRE(nCol >= 1);
00348         TupleData inputTuple;
00349         inputTuple.compute(bufAccessor.getTupleDesc());
00350         for (;;) {
00351             if (!bufAccessor.demandData()) {
00352                 break;
00353             }
00354             BOOST_REQUIRE(nRows < nRowsExpected);
00355             bufAccessor.unmarshalTuple(inputTuple);
00356             for (int col = 0; col < nCol; ++col) {
00357                 int64_t actualValue =
00358                     *reinterpret_cast<int64_t const *>(inputTuple[col].pData);
00359                 int64_t expectedValue = generator.generateValue(nRows, col);
00360                 if (actualValue != expectedValue) {
00361                     std::cout << "(Row, Col) = (" << nRows << ", " << col <<")"
00362                               << std::endl;
00363                     BOOST_CHECK_EQUAL(expectedValue,actualValue);
00364                     return;
00365                 }
00366             }
00367             bufAccessor.consumeTuple();
00368             ++nRows;
00369             if (stopEarly && nRows == nRowsExpected) {
00370                 return;
00371             }
00372         }
00373     }
00374     BOOST_CHECK_EQUAL(nRowsExpected,nRows);
00375 }
00376 
00377 void ExecStreamUnitTestBase::verifyConstantOutput(
00378     ExecStream &stream,
00379     const TupleData &expectedTuple,
00380     uint nRowsExpected)
00381 {
00382     // TODO:  assertions about output tuple
00383 
00384     pResourceGovernor->requestResources(*pGraph);
00385     pGraph->open();
00386     pScheduler->start();
00387     uint nRows = 0;
00388     for (;;) {
00389         ExecStreamBufAccessor &bufAccessor =
00390             pScheduler->readStream(stream);
00391         if (bufAccessor.getState() == EXECBUF_EOS) {
00392             break;
00393         }
00394         BOOST_REQUIRE(bufAccessor.isConsumptionPossible());
00395 
00396         if (!bufAccessor.demandData()) {
00397             break;
00398         }
00399         BOOST_REQUIRE(nRows < nRowsExpected);
00400 
00401         TupleData actualTuple;
00402         actualTuple.compute(bufAccessor.getTupleDesc());
00403         bufAccessor.unmarshalTuple(actualTuple);
00404 
00405         int c = bufAccessor.getTupleDesc().compareTuples(
00406                                expectedTuple, actualTuple);
00407         bufAccessor.consumeTuple();
00408         ++nRows;
00409         if (c) {
00410 #if 1
00411             TupleDescriptor statusDesc = bufAccessor.getTupleDesc();
00412             TuplePrinter tuplePrinter;
00413             tuplePrinter.print(std::cout, statusDesc, actualTuple);
00414             tuplePrinter.print(std::cout, statusDesc, expectedTuple);
00415             std::cout << std::endl;
00416 #endif
00417             BOOST_CHECK_EQUAL(0,c);
00418             break;
00419         }
00420     }
00421     BOOST_CHECK_EQUAL(nRowsExpected, nRows);
00422 }
00423 
00424 void ExecStreamUnitTestBase::verifyBufferedOutput(
00425     ExecStream &stream,
00426     TupleDescriptor outputTupleDesc,
00427     uint nRowsExpected,
00428     PBuffer expectedBuffer)
00429 {
00430     // TODO:  assertions about output tuple
00431 
00432     TupleAccessor expectedOutputAccessor;
00433     expectedOutputAccessor.compute(outputTupleDesc);
00434     TupleData expectedTuple(outputTupleDesc);
00435     uint bufOffset = 0;
00436     pResourceGovernor->requestResources(*pGraph);
00437     pGraph->open();
00438     pScheduler->start();
00439     uint nRows = 0;
00440     for (;;) {
00441         ExecStreamBufAccessor &bufAccessor =
00442             pScheduler->readStream(stream);
00443         if (bufAccessor.getState() == EXECBUF_EOS) {
00444             break;
00445         }
00446         BOOST_REQUIRE(bufAccessor.getTupleDesc() == outputTupleDesc);
00447         BOOST_REQUIRE(bufAccessor.isConsumptionPossible());
00448         const uint nCol =
00449             bufAccessor.getConsumptionTupleAccessor().size();
00450         BOOST_REQUIRE(nCol == bufAccessor.getTupleDesc().size());
00451         BOOST_REQUIRE(nCol >= 1);
00452         TupleData inputTuple;
00453         inputTuple.compute(bufAccessor.getTupleDesc());
00454         for (;;) {
00455             if (!bufAccessor.demandData()) {
00456                 break;
00457             }
00458             BOOST_REQUIRE(nRows < nRowsExpected);
00459             bufAccessor.unmarshalTuple(inputTuple);
00460             expectedOutputAccessor.setCurrentTupleBuf(
00461                 expectedBuffer + bufOffset);
00462             expectedOutputAccessor.unmarshal(expectedTuple);
00463             int c = outputTupleDesc.compareTuples(inputTuple, expectedTuple);
00464             if (c) {
00465                 std::cout << "(Row) = (" << nRows << ")"
00466                     << " -- Tuples don't match"<< std::endl;
00467                 BOOST_CHECK_EQUAL(0,c);
00468                 return;
00469             }
00470             bufAccessor.consumeTuple();
00471             bufOffset += expectedOutputAccessor.getCurrentByteCount();
00472             ++nRows;
00473         }
00474     }
00475     BOOST_CHECK_EQUAL(nRowsExpected,nRows);
00476 }
00477 
00478 FENNEL_END_CPPFILE("$Id: //open/dev/fennel/test/ExecStreamUnitTestBase.cpp#23 $");
00479 
00480 // End ExecStreamUnitTestBase.cpp

Generated on Mon Jun 22 04:00:20 2009 for Fennel by  doxygen 1.5.1